Code 44: How to Read Ahler and Sood

27 Jun

This is a follow-up to the hilarious Twitter thread about the sequence of 44s. Numbers in Perry’s 538 piece come from this paper.

First, yes 44s are indeed correct. (Better yet, look for yourself.) But what do the 44s refer to? 44 is the average of all the responses. When Perry writes “Republicans estimated the share at 46 percent,” (we have similar language in the paper, which is regrettable as it can be easily misunderstood), it doesn’t mean that every Republican thinks so. It may not even mean that the median Republican thinks so. See OA 1.7 for medians, OA 1.8 for distributions, but see also OA 2.8.1, Table OA 2.18, OA 2.8.2, OA 2.11 and Table OA 2.23.

Key points =

1. Large majorities overestimate the share of party-stereotypical groups in the party, except for Evangelicals and Southerners.

2. Compared to what people think is the share of a group in the population, people still think the share of the group in the stereotyped party is greater. (But how much more varies a fair bit.)

3. People also generally underestimate the share of counter-stereotypical groups in the party.

Automating Understanding, Not Just ML

27 Jun

Some of the most complex parts of Machine Learning are largely automated. The modal ML person types in simple commands for very complex operations and voila! Some companies, like Microsoft (Azure) and DataRobot, also provide a UI for this. And this has generally not turned out well. Why? Because this kind of system does too little for the modal ML person and expects too much from the rest. So the modal ML person doesn’t use it. And the people who do use it, generally use it badly. The black box remains the black box. But not much is needed to place a lamp in this black box. Really, just two things are needed:

1. A data summarization and visualization engine, preferably with some chatbot feature that guides people smartly through the key points, including the problems. For instance, start with univariate summaries, highlighting ranges, missing data, sparsity, and such. Then, if it is a supervised problem, give people a bunch of loess plots or explain the ‘best fitting’ parametric approximations with y in plain English, such as, “people who eat 1 more cookie live 5 minutes shorter on average.”

2. An explanation engine, including what the explanations of observational predictions mean. We already have reasonable implementations of this.

When you have both, you have automated complexity thoughtfully, in a way that empowers people, rather than create a system that enables people to do fancy things badly.

Talking On a Tangent

22 Jun

What is the trend over the last X months? One estimate of the ‘trend’ over the last k time periods is what I call the ‘hold up the ends’ method. Look at t_k and t_0, get the difference between the two, and divide by the number of time periods. If t_k > t_0, you say that things are going up. If t_k < t_0, you say things are going down. And if they are the same, then you say that things are flat. But this method can elide over important non-linearity. For instance, say unemployment went down in the first 9 months and then went up over the last 3 but ended with t_k < t_0. What is the trend? If by trend, we mean average slope over the last t time periods, and if there is no measurement error, then 'hold up the ends' method is reasonable. If there is measurement error, we would want to smooth the time series first before we hold up the ends. Often people care about 'consistency' in the trend. One estimate of consistency is the following: the proportion of times we get a number of the same sign when we do pairwise comparison of any two time consecutive time periods. Often people also care more about later time periods than earlier time periods. And one could build on that intuition by weighting later changes more.

Targeting 101

22 Jun

Say that there is a company that makes more than one product. The company can run an ad in one of its products about the one or more other products it produces that a user doesn’t use. Should it consider targeting—not showing the same ad to all users? There are six things to consider:

  1. Opportunity Cost: Could the company make more profit by showing an ad for something else?
  2. Cost of Showing an Ad to an Additional User: The cost of serving an ad; it is close to zero in the digital economy.
  3. Cost of Worse Product: An ad for an irrelevant product lowers the user’s welfare. (The magnitude of the reduction depends on how disruptive the ad is and how irrelevant it is.) As a result of seeing an irrelevant ad in the product, the user likes the product less.
  4. Cost of Not Learning About the Relevant Product Sooner and Investment in Learning About an Irrelevant Product: the cost of not learning about a product they could use sooner. Plus the investment a user makes in learning about a product that is not relevant to them.
  5. Poisoning the Well: Showing an irrelevant ad means that people are more likely to skip whatever ad you present next. It reduces your ability to monetize future ads.
  6. Profits: On the flip side of the ledger are expected profits. What are the expected profits from showing an ad? If you show a user an ad for a relevant product, they may not just buy and use the other product, but may also become less likely to switch from your stack. Further, they may even proselytize your product, netting you more users.

I formalize the problem here (pdf).

Firmly Against Posing Firmly

31 May

“What is crucial for you as the writer is to express your opinion firmly,” writes William Zinsser in “On Writing Well: An Informal Guide to Writing Nonfiction.” To emphasize the point, Bill repeats the point at the end of the paragraph, ending with, “Take your stand with conviction.”

This advice is not for all writers—Bill particularly wants editorial writers to write with a clear point of view.

When Bill was an editorial writer for the New York Herald Tribune, he attended a daily editorial meeting to “discuss what editorials … to write for the next day and what position …[to] take.” Bill recollects,

“Frequently [they] weren’t quite sure, especially the writer who was an expert on Latin America.

“What about that coup in Uruguay?” the editor would ask. “It could represent progress for the economy,” the writer would reply, “or then again it might destabilize the whole political situation. I suppose I could mention the possible benefits and then—”

The editor would admonish such uncertainty with a curt “let’s not go peeing down both legs.”

Bill approves of taking a side. He likes what the editor is saying if not the language. He calls it the best advice he has received on writing columns. I don’t. Certainty should only come from one source: conviction born from thoughtful consideration of facts and arguments. Don’t feign certainty. Don’t discuss concerns in a perfunctory manner. And don’t discuss concerns at the end.

Surprisingly, Bill agrees with the last bit about not discussing concerns in a perfunctory manner at the end. But for a different reason. He thinks that “last-minute evasions and escapes [cancel strength].”

Don’t be a mug. If there are serious concerns, don’t wait until the end to note them. Note them as they come up.

Sigh-tations

1 May

In 2010, Google estimated that approximately 130M books had been published.

As a species, we still know very little about the world. But what we know already far exceeds what any of us can learn in a lifetime.

Scientists are acutely aware of the point. They must specialize, as chances of learning all the key facts about anything but the narrowest of the domains are slim. They must also resort to shorthand to communicate what is known and what is new. The shorthand that they use is—citations. However, this vital building block of science is often rife with problems. The three key problems with how scientists cite are:

1. Cite in an imprecise manner. This broad claim is supported by X. Or, our results are consistent with XYZ. (Our results are consistent with is consistent with directional thinking than thinking in terms of effect size. That means all sorts of effects are consistent, even those 10x as large.) For an example of how I think work should be cited, see Table 1 of this paper.

2. Do not carefully read what they cite. This includes misstating key claims and citing retracted articles approvingly (see here). The corollary is that scientists do not closely scrutinize papers they cite, with the extent of scrutiny explained by how much they agree with the results (see the next point). For a provocative example, see here.)

3. Cite in a motivated manner. Scientists ‘up’ the thesis of articles they agree with, for instance, misstating correlation as causation. And they blow up minor methodological points with articles whose results their paper’s result is ‘inconsistent’ with. (A brief note on motivated citations: here).

“Cosal” Inference

27 Apr

We often make causal claims based on fallible heuristics. Some of the heuristics that we commonly use to make causal claims are:

  1. Selecting on the dependent variable. How often have you seen a magazine article with a title like “Five Habits of Successful People”? The implicit message in such articles is that if you were to develop these habits, you would be successful too. The articles never discuss how many unsuccessful people have the same habits or all the other dimensions on which successful and unsuccessful people differ.
  2. Believing that correlation implies causation. A common example goes like this: children who watch more television are more violent. From this data, people deduce that watching television causes children to be violent. It is possible, but there are other potential explanations.
  3. Believing that events that happen in a sequence are causally related. B follows A so A must cause B. Often there isn’t just one A, but lots of As. And the B doesn’t instantaneously follow A.

Beyond this, people also tend to interpret vague claims such as X causes Y as X causes large changes in Y. (There is likely some motivated aspect to how this interpretation happens.)

Bad Hombres: Bad People on the Other Side

8 Dec

Why do many people think that people on the other side are not well motivated? It could be because they think that the other side is less moral than them. And since opprobrium toward the morally defective is the bedrock of society, thinking that the people in the other group are less moral naturally leads people to censure the other group.

But it can’t be that two groups simultaneously have better morals than the other. It can only be that people in the groups think they are better. This much logic dictates. So, there has to be a self-serving aspect to moral standards. And this is what often leads people to think that the other side is less moral. Accepting this is not the same as accepting moral relativism. For even if we accept that some things are objectively more moral—not being sexist or racist say—some groups—those that espouse that a certain sex is superior or certain races are better—will still think that they are better.

But how do people come to know of other people’s morals? Some people infer morals from political aims. And that is a perfectly reasonable thing to do as political aims reflect what we value. For instance, a Republican who values ‘life’ may think that Democrats are morally inferior because they support the right to abortion. But the inference is fraught with error. As matters stand, Democrats would also like women to not go through the painful decision of aborting a fetus. They just want there to be an easy and safe way for women should they need to.

Sometimes people infer morals from policies. But support for different policies can stem from having different information or beliefs about causal claims. For instance, Democrats may support a carbon tax because they believe (correctly) the world is warming and because they think that the carbon tax is what will help reduce global warming the best and protect American interests. Republicans may dispute any part of that chain of logic. The point isn’t what is being disputed per se, but what people will infer about others if they just had information about the policies they support. Hanlon’s razor is often a good rule.

Why Do People (Re)-Elect Bad Leaders?

7 Dec

‘Why do people (re)-elect bad leaders?’ used to be a question that people only asked of third-world countries. No more. The recent election of unfit people to prominent positions in the U.S. and elsewhere has finally woken some American political scientists from their mildly racist reverie—the dream that they are somehow different.

So why do people (re)-elect bad leaders? One explanation that is often given is that people prefer leaders that share their ethnicity. The conventional explanation for preferring co-ethnics is that people expect co-ethnics (everyone) to do better under a co-ethnic leader. But often enough, the expectation seems more like wishful thinking than anything else. After all, the unsuitability of some leaders is pretty clear.

If it is wishful thinking, then how do we expose it? More importantly, how do we fix it? Let’s for the moment assume that people care about everyone. And if they were to learn that the co-ethnic leader is much worse than someone else, they may switch votes. But what if people care about the welfare of co-ethnics more than others? The ‘good’ thing about bad leaders is that they are generally bad for everyone. So, if they knew better, they would still switch their vote.

You can verify these points using a behavioral trust game where people observe allocators of different ethnicities and different competence, and also observe welfare of both co-ethnics and others. You can also use the game to study some of the deepest concerns about ‘negative party ID’—that people will harm themselves to spite others.