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Abstract

The Policy Research Working Paper Series disseminates the findings of work in progress to encourage the exchange of ideas about development 
issues. An objective of the series is to get the findings out quickly, even if the presentations are less than fully polished. The papers carry the 
names of the authors and should be cited accordingly. The findings, interpretations, and conclusions expressed in this paper are entirely those 
of the authors. They do not necessarily represent the views of the International Bank for Reconstruction and Development/World Bank and 
its affiliated organizations, or those of the Executive Directors of the World Bank or the governments they represent.
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This paper uses student answers to publicly released 
questions from an international testing agency together 
with statistical methods from Item Response Theory 
to place secondary students from two Indian states—
Orissa and Rajasthan—on a worldwide distribution of 
mathematics achievement. These two states fall below 
43 of the 51 countries for which data exist. The bottom 
5 percent of children rank higher than the bottom 5 
percent in only three countries—South Africa, Ghana 
and Saudi Arabia. But not all students test poorly. 
Inequality in the test-score distribution for both states 
is next only to South Africa in the worldwide ranking 
exercise. Consequently, and to the extent that these two 

This paper—a product of the Human Development and Public Services Team, Development Research Group—is part of a 
larger effort in the department to measure and understand inequality in the provision of education. Policy Research Working 
Papers are also posted on the Web at http://econ.worldbank.org. The author may be contacted at jdas1@worldbank.org. 

states can represent India, the two statements ``for every 
ten top performers in the United States there are four in 
India'' and ``for every ten low performers in the United 
States there are two hundred in India'' are both consistent 
with the data. The combination of India's size and large 
variance in achievement give both the perceptions that 
India is shining even as Bharat, the vernacular for India, 
is drowning. Comparable estimates of inequalities in 
learning are the building blocks for substantive research 
on the correlates of earnings inequality in India and other 
low-income countries; the methods proposed here allow 
for independent testing exercises to build up such data by 
linking scores to internationally comparable tests. 
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“It has long been claimed that everything one can say about India is true—and so

is the opposite.” -Devesh Kapur, 2005

1 Introduction

Net primary enrollment in India has risen steadily over the last several decades and now exceeds

90 percent in most of the country. Large planned increases in the government education budget

suggest renewed interest and action on the part of the state, with an emphasis on secondary

schooling. Not surprisingly, increasing enrollments and resources have shifted the debate from

how many children are in school to what they are learning. A consensus is building that getting

children into schools may not be enough. Filmer et al. (2006) go so far as to propose augmenting

the Millennium Development Goals with a Millennium Learning Goal that provides international

benchmarks on how much children know at a pre-specified age. We ask the following question: Is

there a way to place Indian children in secondary schools on an international scale (given India’s
∗We thank Lant Pritchett for extensive discussions of the paper. Kin Bing Wu who led a World Bank sector

study on secondary education in India designed the collection of the data we use here, and we are grateful to
her for making the data and her report available to us. Eric Hanushek and Eugene Gonzalez provided invaluable
comments on an early version of this paper and their insights have been critical for the current revision. Michelle
Riboud and Sam Carlson provided useful comments that pertain to India’s education sector. The findings,
interpretations, and conclusions expressed in this paper are those of the authors and do not necessarily represent
the views of the World Bank, its Executive Directors, or the governments they represent. Working papers describe
research in progress by the authors and are published to elicit comments and to further debate.
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reluctance to participate in internationally benchmarked tests) and, if so, what would we find in

terms of the average score and variance of the achievement distribution?

We propose a method that uses publicly released questions (items) from the Trends in In-

ternational Mathematics and Science Study (TIMSS) 1999 8th-Grade Mathematics test to place

Indian students on an internationally comparable achievement scale. The test, which consists

of 36 items taken from the full TIMSS item bank, was administered to 6,000 students in pub-

lic and private schools in two Indian states—Rajasthan and Orissa. Using the published item

parameters for these 36 questions in conjunction with the Item Response Theory test-equating

methods used by TIMSS, we construct a distribution of scores for the tested children that is

directly comparable to the worldwide distribution; this allows us to compare the tested children

to the international average and to place them in reference to the 51 other countries tested by

TIMSS in 1999 and 2003.

The average scores of children in Rajasthan and Orissa place these states below 46 and 42 of

the 51 countries tested in 1999 or 2003. After nine years of education, between 30 and 40 percent

of enrolled children in these two states cannot pass a low international benchmark, described

as “some basic mathematical knowledge.” Children enrolled in secondary schools in these two

Indian states are 3.1 (OECD) standard-deviations below the OECD mean. Where children in

these two states are relative to the rest of the world is harder to ascertain. On the one hand, the

TIMSS sample is heavily biased towards relatively high-income countries. The median scores,

for instance, in Rajasthan and Orissa do not look too bad compared to Philippines and Chile.

On the other hand, secondary school enrollments in India are also lower—53 percent of the

appropriate age group is enrolled, compared to more than 90 percent in South Africa, the worst

performer in the TIMSS sample. To the extent that children currently out of school are less

“motivated” or “able”, test scores would arguably look worse at higher levels of enrollment.

The test-score distribution is also highly unequal—the difference between the top 5 percent

and bottom 5 percent in both states is among the highest in the world, next only to South

Africa. Students at the bottom of the distribution in both states score similarly or worse than

the bottom students in the three worst performing countries. At the same time, students at the

top of the distribution score higher than the top students in other low performing countries, and

higher than the median student in all but the best countries. The top 5 percent of students in
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Orissa, for example, score higher than the median student in more than 42 of 46 countries tested

in 2003.

Faced with similar results on learning, defenders of the quality of education in Indian schools

often point to the large number of globally competitive Indians. We perform the following

thought experiment: Suppose that these two states represent India (more on this below). Could

the country’s size combined with the large variance in scores explain how divergent beliefs can

be sustained by the same data? As it turns out, in absolute terms, India has just under half the

number of 14-year olds who pass the advanced international benchmark as the United States—100

thousand compared to 250 thousand—and roughly the same number who pass the intermediate

international benchmark. Indeed, India has more top achievers than any European country

tested, which, although not surprising given India’s size, helps explain India’s visible position on

the academic stage. But another view is also sustainable. The average child scores far below

any reasonable curricular standard and a large minority in these two states fails completely. If

the results form these two states hold more generally, over 18 million 14-year olds in India are

either not enrolled or are failing the lowest international benchmark if enrolled. That number is

22 times the number of failing children in the United States and more than any other country

tested.

Beyond providing illustrative results for India, this paper is about the building blocks for

research on learning and learning inequality in low-income countries where data on internationally

comparable tests are typically absent. This requires 1) techniques to place individual students on

a single comparable achievement metric and 2) methods to calculate other population quantities,

such as the fraction of children passing particular criterion-referenced thresholds or the 5th to

95th percentile achievement spread. Clarifying what is required for comparable measures of

learning and learning dispersion allows the research to focus on substantive rather than statistical

issues, without worrying about whether results are driven by measurement tools and differing

methodologies.

To preview the methodology, independent tests can be linked to the TIMSS achievement

distribution provided at least one question is drawn from the TIMSS item bank to fix the free

parameters. The primary methodological difficulty arises because “knowledge” or “achievement”

is inferred from the data rather than directly observed. Since individual knowledge is measured

3



with error, the variance of the achievement distribution aggregated from Maximum Likelihood

estimates of individual knowledge overestimates the true variance. An alternate method, out-

lined by Mislevy, Beaton, Kaplan & Sheehan (1992), draws from the posterior of every student’s

achievement distribution to obtain an unbiased measure of the full learning distribution. These

draws—known as “plausible values”—are interpreted as individual achievement with the property

that when aggregated to a population distribution they recover the correct population moments.

We show that the variance of the distribution is sensitive to the estimation method used (i.e.

Maximum Likelihood, Bayesian, or Plausible Values), primarily because the TIMSS test is too

difficult for a large fraction of Indian children.1 The method of plausible values offers an alter-

native for the calculation of higher moments in any setting—such as poverty mapping—where

individuals attributes are estimated with a known standard error.

Linking scores to an international distribution contributes to the literature on education

in low-income countries in several ways. First, linked test scores are comparable across space

and time. Despite increasing worldwide testing using standardized methods—e.g. TIMSS (51

countries), PIRLS (35 countries), IALS (22 countries) and PISA (49 countries)—the Indian gov-

ernment, like many others, is reluctant to participate in such large-scale testing exercises. As

a result, what little is known about learning achievement in India, and most low-income coun-

tries, arises from an ad-hoc collection of criterion-referenced exams.2 These tests, administered

by independent agencies, are typically not validated using standard testing tools, cannot be

equated over time or across countries, and are not subject to a battery of robustness checks that

accompany large-scale testing in the OECD countries. The methods applied here allow indepen-

dent researchers to report achievement distributions for the tests they control that are directly
1Brown & Micklewright (2004) also highlights the importance of using a consistent methodology. They find,

for instance, that rankings of countries by within-country difference in TIMSS changed substantially for some
countries when the scoring model used in 1999 was retrospectively applied to 1995 data.

2Examples for India include a large national study by the National Center for Educational Research and
Training (NCERT) in 1994, which found that children scored an average of 47 percent in language and 41 percent
in mathematics (Shukla et al. 1994), and state-wide studies with smaller samples in Bihar, Tamil Nadu, Delhi,
Uttar Pradesh, Madhya Pradesh and Rajasthan(Bashir 1994, Hasan 1995, Govinda & Varghese 1993, Aggarwal
2000, Goyal 2007). In a major recent effort, the NGO Pratham tested children from almost all districts and found
low levels of learning: 52 percent of children between the ages of 7 and 10 could read a small paragraph with
short sentences at first grade difficulty levels, 32 percent could read a story text and 54 per cent were unable
to divide or subtract (Pratham 2006). Similar results have been reported for Africa. In a relatively large effort,
the Monitoring Learning Achievement Project (Chinapah et al. 2000, Strauss & Burger 2000)covered 13 African
countries and found literacy, numeracy, and life-skills scores for fourth graders between 30 and 70 percent.
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comparable to those obtained worldwide.3

Comparable achievement measures contribute to our understanding of earnings inequality

and its correlates. A growing literature examines the relationship between earnings inequality

and test-score dispersion. Nickell (2004) and Blau & Kahn (2005) report a high correlation

between test-score dispersion and wage inequality; Nickell (2004) for instance suggests that 70

percent of the dispersion in earnings internationally is attributable to the dispersion in test-scores.

Similarly, Bedard & Ferrall (2003) show that test-score inequality at early ages is correlated

with wage inequality in the same cohort later in life. In contrast to this literature, Devroye

& Freeman (2001) argue that wage dispersion within narrowly defined skill sets is higher than

that across and that institutional mechanisms of collective bargaining matter more. India has

recently seen a dramatic increase in inequality (Debroy & Bhandari 2007), at the same time

that inequality in educational attainment is falling (Jalan & Murgai 2007). It is likely that as

inequality in attainment declines further and returns to skill increase (Kijima 2006), attention

will increasingly focus on the inequality in cognitive ability.

The remainder of this paper is structured as follows. Section 2 outlines the Item Response

Theory method for equating test scores. The technical section and accompanying appendix

provides sufficient details for critique and replication. Section 3 discusses the data, sampling

strategy, and test design. Section 4 reports the international benchmarking results and variance

decompositions. Section 5 outlines some caveats to our method and several robustness checks;

Section 6 concludes.

2 Overview of Linking Methodology

Properly linking India’s mathematics achievement to the world distribution requires either a

single test given across all countries (and each year) or a means of linking alternate test forms

which may include different items. Since giving a single test is clearly infeasible in most situations,

educational testing organizations have developed statistical tools that allow scores from different

exams to be expressed on a unified scale. Item Response Theory (IRT) is one such technique
3Inter alia, such standardization would help benchmark the relative efficacy of different educational interven-

tions. High inequality in the Indian learning distribution, for instance, implies that interventions leading to a,
say, 0.2 s.d. increase in learning represent a greater increase in “knowledge” than a similar effect in the United
States.
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and is used in most large-scale testing situations such as TIMSS, PIRLS, NAEP and the SAT

and GRE. The basic intuition behind this technique is to model the behavior of each item—i.e.

its difficulty, ability to discriminate between two children, and likelihood of being guessed—so

that any differences in items can be removed from the score. This contrasts with the commonly

reported percent correct score, which gives performance on a test-specific scale.

The fundamental building block of IRT is therefore the item response function (IRF), which

links the latent ability, θ, to the probability a randomly drawn examinee of a given ability will

answer the item correctly. One of the most popular models for dichotomous responses is the

three-parameter (3PL) logistic model introduced by Birnbaum (1968) and used by TIMSS for

multiple choice items. Letting Xig represent the (0/1) response for individual i on item g, the

IRF for the 3PL model is

Pg(Xig = 1|θ) = cg +
1− cg

1 + exp [−ag (θ − bg)]
. (1)

This function describes all 36 items administered to our sample and gives the probability of

observing a correct response given ability θ and item parameters (ag, bg, cg).

Figure 1 provides the intuition behind the 3PL model parameters. The pseudo guessing

parameter, cg, incorporates the fact that on multiple choice exams even the worst performers

(θ → −∞) will sometimes guess correctly. The difficulty parameter, bg, measures the item’s

overall difficulty since the probability of answering correctly depends equally on ability and

difficulty. The discrimination parameter, ag, captures how quickly the likelihood of success

changes with respect to ability. Intuitively, an item with a high discrimination parameter can

distinguish between examinees with abilities just below and above bg. Overall, this relatively

flexible functional form has proved adept at fitting item response patterns.

To illustrate graphically how IRT links items and tests, Figure 2 plots the item response

functions for two TIMSS items that map ability on the horizontal axis to the percentage correct

on the test. A third curve plots the test characteristic curve for a test composed of these two

items only. Since the item response functions are fully characterized by the published TIMSS

items parameter and the structural assumption of a logistic function, it is easy to read the mean

ability of a child by the percentage correct on the test. For instance, if item 19 is administered
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and 60 percent of children respond correctly, the mean ability is 425. By comparison, the same

result on item 21 would suggest a higher mean ability level since the question is more difficult.

The key advantage of IRT in large testing situations is this ability to link tests, either in a

cross-section (when different children are administered different test questions) or over time (when

children are tested more than once). Formally, IRT equates competence levels by identifying

off the set of common items across the tests and defining a reference population. Absent a

reference population, the IRF given by (1) provides competence levels and item parameters

that are identified up to an affine transformation—poor performance cannot be distinguished

from a difficult test and a large variance in achievement cannot be distinguished from a highly

discriminating test. Specifically, the transformations

θ′ = αθ + k (2)

b′g = αbg + k (3)

a′g =
ag

α
(4)

c′g = cg (5)

will yield identical characteristic curves, so that Pg(θ′; a′g, b
′
g, c
′
g) = Pg(θ; ag, bg, cg). However,

if item parameters are fixed, the scale of θ—the mean and variance—is fixed as well. Thus

by calibrating items using a defined reference group we can score the performance of all other

children relative to that group, regardless of which items children actually complete. In our case,

the reference group is given by the TIMSS knowledge scale. This scale fixes the item parameters

such that the TIMSS 1995 sample of eighth grade children have mean 500 and standard deviation

100 (Yamamoto & Kulick 2000).

In our application, all students receive the same exam and all item parameters are fixed using

TIMSS. In general, however, this need not be the case. Students can receive different exams and

new items so long as each item can be linked to a common set of fixed items or a fixed reference

population. For example, three two-item exams with item pairs (1,2), (2,3) and (3,4) can all be

linked provided that one of the four items is fixed, even if each test is administered to a different

population.4

4To see this, note that if we fix item 1—drawing it from the TIMSS item bank, say—we can estimate the
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2.1 Estimating the Mean

Given a set of individuals who were administered the same test, the likelihood function of ob-

serving the N ×G response matrix x is

L(θ, a, b, c|x) =
∏

i

∏
g

Pg(θi; ag, bg, cg)xig [1− Pg(θi; ag, bg, cg)]1−xig , (6)

where Pg is the 3PL model given by (1) and xig is the 0/1 response for individual i on item g.

Because of convergence issues associated with joint maximum likelihood methods that iterate

between solutions for item parameters and individual abilities, most researchers use marginal

maximum likelihood (MML) to estimate the 3PL model. To estimate any unknown item pa-

rameters, this method integrates out the ability distribution f(θ) to get the marginal likelihood

function. Bock & Aitken (1981) propose an efficient EM algorithm to perform the resulting max-

imization problem. In addition to the parameter estimates, this algorithm returns a summary

measure of the ability distribution f(θ) such as a mean and variance or a quadrature approx-

imation. To obtain individual ability estimates, one can maximize the full likelihood function

(6) treating the item parameters as fixed. For our application, this is all that is required to

produce MLEs since all parameters are known. The sample means—the average score in Orissa

and Rajasthan—can be computed from the individual ability estimates or, potentially, the means

obtained during the marginalization of the full distribution.

While maximum likelihood methods are usually perfectly adequate to estimate sample means,

there are some exceptions. One significant problem is that MLE proficiency is undefined if

children answer fewer items correctly than would be expected by chance. So long as one child

has an undefined ability estimate, so too is the sample average. As a result, researchers commonly

limit the proficiency scale to some finite range. We follow TIMSS and bound MLE scores between

5 and 995—in our sample, 91 of the 6000 tested children are bounded below by 5. A second,

more technical concern relates to the methods used to maximize the likelihood function (6) for

ability. Yen et al. (1991) find that this likelihood function is often multimodal even for tests

parameters for item 2 using the first exam. Given parameters for item 2, we can then estimate the parameter for
item 3 using students who received the second test. These students need not have the same ability distribution
as the first group because they can be compared directly using item 2. Using a similar argument we can link the
third exam to the first two.

8



with up to 50 items, which is a potential pitfall for many numerical maximization algorithms

commonly employed.

Bayesian methods avoid some of these problems by incorporating additional information

through a prior. Leaving just enough notation to capture the basic idea, the Bayesian approach

focuses on the posterior distribution,

p(θ|x) ∝ L(θ|x)p(θ), (7)

which is proportional to the product of the likelihood and prior. The expected a posterior (EAP)

estimate of ability is simply the mean of the posterior distribution for each individual θi. One

advantage of EAP scores is that they are always well defined, even for poorly performing students;

when the likelihood function provides no additional information, the posterior simply converges

to the prior. Moreover, provided that the prior distribution is correctly specified, the mean of

the EAP scores is an unbiased estimate of the sample mean and has a smaller mean squared

error than the corresponding MLE based estimate.

2.2 Estimating the Variance and Quantiles

In addition to the average performance level in Rajasthan and Orissa, we are also interested in

the shape of the full distribution. The primary difficulty here is that if the test is too short,

too easy or too difficult, the individual errors become too large to ignore and the distribution of

estimated individual proficiencies no longer converges to the population distribution (Yamamoto

& Kulick 2000, Mislevy, Beaton, Kaplan & Sheehan 1992). To get a sense for whether this is

an issue in the Indian case, Figure 3 plots the distribution of MLE abilities in a histogram (left

axis) and the associated ±1.96 ∗ se confidence interval on the right axis.5 For children below the

mean, the precision of the ability estimate is very low. Simply put, for most Indian children,

the test is too hard. In this situation, the mean of the sample will still generally approach the
5Item Response Theory provides the standard error for each score from the inverse Fisher information matrix

after ML estimation of the IRT model. As the number of items grows large, this standard error summarizes the
normal sampling distribution of the estimator. However, as the number of items shrinks, the sampling distribution
becomes highly non-normal. In particular, our test is weakly informative for poorly performing students because
we cannot distinguish between students scoring poorly and those score very poorly; we can reject that such
students are high achievers. Consistent with how ML standard errors are calculated, Figure 3 does not capture
this non-normal behavior and instead graphs ±1.96 ∗ se.
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population mean, but the same is not true for the estimated variance.

To see this, consider the variance of the MLE scores θ̂ and the EAP scores θ̄. The variance

of the MLE scores includes both the variance of true scores θ and measurement error e. That is,

Var(θ̂) = Var(θ) + Var(e). (8)

Defining the test reliability ratio as ρ ≡ Var(θ)/Var(θ̂), we have

Var(θ̂) =
Var(θ)
ρ

> Var(θ). (9)

By comparison, the EAP scores are a weighted average of the MLE score and the population

mean, θ̄ = ρθ̂ + (1− ρ)µ. The variance of the EAP scores is therefore

Var(θ̄) = Var
(
ρθ̂ + (1− ρ)µ

)
= ρ2 Var(θ̂) = ρVar(θ) < Var(θ). (10)

The true variance, Var(θ), is bounded above by the MLE score variance and below by the EAP

score variance. It should be clear that this argument extends to any percentile moments such

as the top and bottom quintile. Unfortunately, the error structure in IRT is complicated and

closed-form corrections are not readily available.

One simple way to address this issue is to bound the distribution estimates using MLE and

EAP scores. Where these estimates are similar, no further work may be required—convenient

because both MLE and EAP scores are readily available from standard reports in test analysis

programs such as BILOG-MG. Unfortunately, in parts of the distribution where the test is only

weakly informative the bounds may be quite large; in our application, this turns out to be true

for estimates of lower quantiles.6

A more satisfactory solution, and the one followed by TIMSS, is to draw “plausible values”

from the posterior distribution of each student’s ability estimate and then use these draws to ap-

proximate the true achievement distribution (Mislevy 1991, Mislevy, Beaton, Kaplan & Sheehan

1992, Mislevy, Johnson & Muraki 1992, Yamamoto & Kulick 2000). Staying with our simplified
6Another approach would be to use the information obtained during the integration process of the marginal

maximum likelihood procedure. While this would give unbiased estimates of certain moments it depends crucially
on the integration strategy used and is generally rather cumbersome.
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posterior notation, we draw five plausible values for each child

θ̃i,k ∼ p(θi|x) (k = 1, ..., 5) (11)

and then estimate sample moment of interest as

ŝ =
1
5

5∑
k=1

s(θ̃k) (12)

where s(θ̃k) may be the variance, 90th percentile, etc, of the N element vector of plausible values

θ̃k.

Unfortunately, no publicly available software can draw plausible values for the model we

estimate, making it difficult for other researchers to replicate the TIMSS methodology precisely.

We use the Markov Chain Monte Carlo (MCMC) algorithm proposed by Patz & Junker (1999a,b)

to compute the EAP scores and plausible values. This technique differs from the computational

approach used by TIMSS but is highly flexible and relatively straightforward to implement. We

provide a fuller explanation of our estimation strategy in Appendix A.

To see whether these concerns are of practical importance, Figure 4 shows the estimated MLE,

EAP and PV distributions of ability. The MLE and EAP estimates represent the upper and lower

bounds of the variance of the distribution, with the PV estimates somewhere in between. There

is a considerable divergence in the shape of the distribution to the left of the mean, while at

higher levels of ability, the three distributions look roughly similar. Because individual scores are

only weakly informative for poor performers, the MLE and EAP estimates diverge and plausible

value methodology is crucial to estimating percentile cutoffs at the bottom of the distribution.

3 Data

We use data collected in 2005 as part of a larger World Bank study designed and led by Kin

Bing Wu, and conducted by the Social and Rural Research Institute (SRI) unit of IMRB In-

ternational.7 The study includes detailed surveys of principals, teachers, and students in 288
7For further details on the survey design and an analysis of the correlates of performance, see Wu et al. (2006,

2007).
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schools in the Indian states of Rajasthan (in the West) and Orissa (in the East). The sample was

designed by first selecting districts using population proportional to size (PPS) sampling, where,

in the absence of data on school-by-school enrollment, the PPS methodology was applied to the

population of schools across districts. Following the selection of districts, the total number of

schools to be selected in each district was arrived at and schools were surveyed in both urban

and rural areas, as well as across institutional affiliation; that is, government schools, private

unaided and private aided schools were all included in the sample.

There are three important features of the data. First, only children enrolled in school were

tested. According to the World Development Indicators, gross enrollment in India in lower

secondary schools is only 53 percent, so this leaves out half the children of the relevant age-

group. Consequently, there are intractable issues of trying to generalize the comparison of tested

children to all children across countries. For instance, the gross enrollment in secondary schools

in three other countries close to Orissa and Rajasthan in the world rankings varies dramatically,

from 44 percent in Ghana to 75 percent in Botswana and 90 percent in South Africa. To the

extent that marginal performers are less likely to be enrolled, comparisons of India with South

Africa would therefore favor India; alternatively comparisons between India and Ghana favor

the latter. Although problematic for the mean, the lack of information on non-enrolled children

may not be as problematic for different percentiles—it may be plausible to assume, for instance,

that the 50 percent of children not tested are likely to join the group that performs “poorly”, in

a sense to be made precise below.

Second, although all attempts were made to ensure that no type of school or location was

left out of the sampling procedure, it has been difficult to accurately weight the data given

paucity of data on enrollments in private unaided and aided schools at the district level. This is

a general problem that any testing exercise has to address and it calls for an urgent compilation

of a universal dataset that can be used for sampling in the future.

Third, the data are from two states only, and therefore generalizations to all of India may

be misleading—Rajasthan and Orissa are both poorer states with larger tribal populations.

Learning outcomes though may be different from those suggested by income rankings. The

results from a countrywide testing exercise in rural areas (Pratham 2006) gives us some sense of

where these states lie in the Indian distribution. Among children tested in Grade 8 countrywide
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(rural areas only), 82.4 percent could read a story, 75.2 percent could divide and 95.5 percent

could write. The average of Orissa (83.98 percent (read), 71 percent (divide) and 95.3 percent

(write)) and Rajasthan (92.9 percent can read, 92.4 percent can divide and 98.5 percent can write)

is surprisingly not far off the Indian average—if anything, these results suggest that children in

these two states may be scoring higher than the rest of the country. However, lots of caution

is still warranted—particularly since Orissa performs better than Rajasthan in the tests we use

while Pratham finds the opposite.

In the selected schools, students in ninth grade were administered a 36-item test where all

items were selected from the list of publicly released items published by the TIMSS. The test

sought to cover the content domains tested under the TIMSS with 11 items on Algebra, 5 on Data

Representation, Analysis and Probability, 9 on Fractions and Number Sense, 7 on Geometry and

4 on Measurement. The performance expectation across these content domains also varied and

ranged from "Communicating and Reasoning" to "Using Complex Procedures" (Table 1). The

items selected were neither too difficult nor too hard in the TIMSS calibration, ranging from -1.07

(a student 1 standard deviation below the mean would have a 50 percent chance of answering this

question correctly, absent guessing) to 1.244; the items were also uniformly distributed across

this difficulty range.

4 Results

4.1 International Benchmarking

There are two views that currently dominate thinking about educational policy in India. One

view—active proponents of which include prominent NGOs—is that Bharat is drowning. Average

learning levels are so low that the typical child will leave primary school without knowing how

to read or perform elementary mathematical operations. A second view—often expressed by

those in the government and in the media—is that India is shining. This group points to India’s

increasing global presence, the large number of Indian professionals in high paying jobs, and the

dramatic growth of its service industry, particularly in information technology. As it turns out,

both views contain an element of truth, and both views can be justified by presenting different

pieces of the same data.
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Mirroring the view that Bharat is drowning, absolute achievement, as measured by the percent

correct score, is low compared to curricular standards. A significant fraction of children have

not mastered the content categories expected for their grade (Table 1). By ninth grade, only

11 percent of children in Rajasthan and 17 percent in Orissa can correctly choose the smallest

value from the set 0.625, 0.25, 0.375, 0.5, and 0.125 (Table 1, Q2). The question "A runner ran

3000m in exactly 8 minutes. What was his average speed in meters per second?" (Q7) stumps

all but 23 percent of children in Rajasthan and 32 percent of children in Orissa. A simple test

of division and fractions—"if 4 times a number is 48 what is 1/3 of the number?" (Q10)—is too

difficult for 65 percent of children in Rajasthan and 64 percent of children in Orissa.

While the item-by-item comparison suggests that Indian children are performing significantly

below the international average, interpreting the magnitude of this effect is difficult because it

depends on a test-specific metric. As discussed, the percentage correct score is a function of

latent achievement differences—our true parameter of interest—and the discriminating power of

the test, and thus inseparable from the specific test design.

Figure 5 uses the linking methodology proposed previously to present cross-country compar-

isons on the TIMSS achievement scale.8 Based on the average score, Rajasthan and Orissa rank

below 46 (42) of the 51 countries tested with a score of 382 and 404. This ranking straddles

Bahrain, Chile and Morocco and is boxed in by Egypt above and the Philippines below. Averag-

ing across the entire tested sample, India scores 392—below 43 of 51 countries. This compares

to the international average of 487 in 1999 and 467 in 2003. Seen in standard deviations of all

children tested, the two Indian states are 0.7 student standard-deviations or 1 country standard-

deviation below the TIMSS mean. Relative to the OECD mean, the tested Indian children are

3.1 (OECD) standard deviations below. That is, if we rank all the OECD countries, India would

lie below the 1st percentile in the distribution of OECD country scores.

The true picture may be worse. Since the tests included only enrolled children, the com-

parisons favor India to the extent that enrollment is lower relative to other countries. In both
8We follow the TIMSS methodology as closely as possible and compute sample averages using the EAP scores,

which is, in this case, simply more efficient than using plausible values. The MLE scores, which are estimated
using BILOG-MG rather than our custom MCMC routines, yield somewhat lower estimates of the average: 374
and 386. The discrepancy between the EAP and MLE averages is likely due to students scoring in an area where
the likelihood function is virtually flat or undefined. In this situation, regularity and stability become a major
concern with MLE.
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Botswana (75 percent) and South Africa (90 percent) gross enrollment in secondary schools is

higher. It is likely that a representative sample of children (enrolled and unenrolled) would place

India below additional countries.

That the average child is performing poorly masks the considerable variation in the distribu-

tion. At the bottom, children score extremely poorly. There is no evidence that the distribution

is more compressed at the bottom than for other low-performing countries. In fact, only three

countries—Saudi Arabia, Ghana, and South Africa—score worse than Rajasthan or Orissa if

ranked by the 5th percentile cutoff score (Figure 6). When the education system fails, it fails

completely.

4.2 Inequality in the Learning Distribution

Following Micklewright & Schnepf (2006), we report a simple statistic measuring test-score

dispersion—the difference between 5th and 95th percentiles of the test score distribution. Figure

7 shows the significant educational inequality in the Indian learning distribution. In both the

Indian states, the 5-95 percentile spread is greater than 300, and just below the most unequal

country in the TIMSS sample—South Africa.

TIMSS 2003 also presents achievement benchmarks based on an intensive effort to anchor

performance to objective criteria. Table 2, drawn from TIMSS 2003 (Exhibit 2.1), describes the

low (400), intermediate (475), high (550), and advanced (625) international benchmarks; Table 3

shows the results. In Rajasthan and Orissa, 1 percent of children pass the advanced benchmark.

This actually is above many other poor performing countries. At the same time, only 42 percent

in Rajasthan and 50 percent in Orissa pass the lowest benchmark. Put another way, only 40

to 50 percent of Rajasthan and Orissa’s enrolled ninth graders have “some basic mathematical

knowledge”—the description of the low international benchmark.

A second useful exercise that demonstrates the vast differences between tested children is to

rank Table 3 by those who reach each of the different international benchmarks. Ranked by the

low international benchmark, Rajasthan is 8th from the bottom and Orissa 9th; ranked by the

intermediate benchmark, they are now 9th and 14th from the bottom respectively; ranked by

the high international benchmark they are now 11th and 16th from the bottom. The advanced

international benchmarks put both states at the respectable positions of 12th and 18th, although
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the precise ranking is difficult to obtain given rounding.

To the extent that these two states represent India, the combination of a wide achievement

distribution and immense population explains why perceptions of India can vary so dramatically.

In Table 4, we use population age-cohort estimates and enrollment rates to estimate the number of

14-year olds in each country who pass the international benchmarks set by TIMSS. The results

are striking. If one percent of Indian children reach the advanced international benchmark—

the average suggested by Rajasthan and Orissa—the total cohort size ranks 5th out of all the

countries tested. Only Japan, the United States, South Korea, and Taiwan have more students

passing the top benchmark. For every ten children who pass the advanced benchmark in the

United states, there are four children who pass the benchmark in India. Indeed, the 101 thousand

Indian children who pass the advanced benchmark exceeds the total number of children who pass

in bottom 32 countries combined. If India were added to the TIMSS sample, one out of every

fourteen children who pass the advanced benchmark would be Indian.

The view from the top—that Indian’s form a substantial fraction of top performers worldwide—

contrasts sharply with the view from the bottom. The sheer magnitude of India’s youth popu-

lation and poor average performance means that over 17 million Indian 14-year olds are either

not enrolled or fail the low international benchmark. This number is 22 times the number in the

United States, 217 times the number in South Korea, and 726 times the number Japan. Indeed,

there are more Indian’s either not enrolled or who fail the low benchmark than in all the other

TIMSS countries combined.

4.3 Variance Decomposition

The striking disparity between top- and bottom-achievers hints that children receive different

educational inputs, both based on the state in which they live and the characteristics of their

families and schools. While it is impossible to draw definitive causal conclusions using simple

correlations or variance decompositions, the patterns that emerge from even a basic analysis are

broadly consistent with a view of an education system rife with inequality but rich in potential.

In a hopeful sign, the form inequality takes suggests that public policy plays a role. The impact

of household attributes—educational inputs that the government has little power to control—

appears mitigated by the institutional structure of states and schools.

16



We present a heuristic approach towards examining the source of achievement in Figure

8. Here, we first regress test scores on district dummies and then plot the residuals—this is

a measure of how much of the variation is accounted for by districts. We then add in child

and household characteristics—age, gender, caste, parental literacy, and wealth—and plot the

residuals again; finally we repeat the exercise including school dummies. To the extent that

districts, households, or schools explain a large portion of the variation in the test score data, we

expect that residual plot to be more “concentrated” once the appropriate dummies are accounted

for. So, if districts matter a lot, we expect the residual plot from a regression of test scores on

district dummies to be “tighter” than the distribution of all test scores.

As Figure 8 shows, schools seem to matter most. Progressively adding district effects and

family characteristics compresses the distribution slightly. Only when we add school fixed effects

is the collapse noticeable; the gaps between schools accounts for more than the gaps between

children from different household characteristics.

Table 5 confirms this result more formally using a simple regression based variance decom-

position. Here, we first regress achievement on district dummies. The R2 from this regression

gives a measure of the variance explained by districts alone. Examining the change in R2 after

adding household controls gives the fraction of achievement variation explained by observable

characteristics above and beyond the district effect. While indicative of households’ contribution

to learning, we cannot claim households causally explain this fraction of variance since children

sort into schools. If this occurs, observable household characteristics may explain achievement

simply because schools determine learning and children sort. Proceeding onward, we add school

dummy variables and report the increase in R2. This gives some sense for the importance of

schools, but again we cannot make definitive causal statements. A significant increase in variance

explained at this stage implies either that schools matter or that children sort on unobservable

characteristics. After accounting districts, observables, and schools, the remaining variation is

idiosyncratic. As Figure 8 shows, measurement error, which cannot be decomposed by definition,

forms a significant portion of this idiosyncratic variation.

Table 5 shows the results of this exercise. In Orissa (Rajasthan), schools explain an additional

32 percent (41 percent) of the test score variation above districts and observable household

characteristics. This is twice the amount of variation explained by districts and household
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characteristics in Orissa and five times the variation explained by those attributes in Rajasthan.

Even if half of this effect is due to selection on unobservables, schools remain important. For

comparison, the maximum variation possibly attributable to school specific factors in OECD

countries is 14 percent—less than half the value for India (Pritchett 2004). If we were to remove

the variation due to measurement error and renormalize our decomposition to sum to one, the

schools’ role would appear even more significant.

5 Robustness Checks

Some caveats are in order. TIMSS uses a complex test design where children are given a subset

of items in a specific format. Our results are based on a test that includes 36 TIMSS questions,

but the test-design is clearly different. The educational testing literature has many examples of

design effects, where test scores are shown to change depending on the design of the test. By

presenting results using IRT equating methods, we are essentially ignoring this rich literature.

One robustness check used in the item response literature compares the actual responses of

children, averaged across ability groups with that predicted on the basis of item parameters.

In our particular case, these tests of “item fit” reveal the extent to which the shape of the item

response function predicted from the TIMSS item parameters corresponds to the actual responses

of examinees. Figure A1 shows the predicted and actual responses for all 36 items.

For the majority of items, both the 3PL model and the item parameters closely predicted how

children would perform. In a few instances, however, the fit could be improved. As an example,

item 33 is a poorly-fitted item where high ability Indian children seem to struggle more than

their international peers. While these few items are unlikely to introduce significant bias, future

researchers should carefully select items during the pilot phase to minimize deviations from the

expected response patterns.

Further, a factor model of item responses generated the first eigenvalue (3.9) 9 times greater

than the second (0.4), easily satisfying Drasgow & Lissak’s (1983) rule-of-thumb for assessing the

unidimensionality assumption. Nevertheless, we could not conduct formal tests of Differential

Item Functioning (DIF) given that we do not have access to item-by-item responses for other

TIMSS examinations (and these are typically not available in the public domain). Mullis &
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Martin (2000), however, conduct the required analysis for the TIMSS 1999 sample and there is

little reason to suspect the results would not extend to India.

The methods and results discussed here should not be taken as advocacy for dispensing with

TIMSS altogether and using their publicly released items to place tested children on international

distributions. TIMSS provides a level of analysis and robustness checking that independent

researchers cannot easily replicate. We view the methods presented here more as a bridge between

current practices and TIMSS-like comparability rather than an alternative. Even in this case,

a larger pilot that compares TIMSS results with those obtained by the methods suggested here

would yield important information on the biases inherent in our equating methods.

6 Conclusion

The educational administration in India has often shaken off the bad news emerging from the

primary educational sector on the grounds that the Indian system is based on the rigors of

selection. A gruelling primary schooling would weed out all but the best performers, who would

then graduate onwards to secondary schools and receive a higher quality education. One response

to the poor testing results from the primary level has in fact been to point to India’s position in

the global economy and the comparable performance of its top firms and professionals to their

international counterparts. In essence, if the schooling system is so poor, how is it that India

has all these top global performers?

But this misses the point. Both positions are sustained by the data. Children from these

two states clearly fail any potential Millennium Learning Goal. If results are similar for the rest

of the country, over 17 million 14 year-olds, around 80 percent of the population, are either not

enrolled or cannot pass the lowest international benchmark. But India’s massive population and

wide variance in achievement also ensure that Indians are amply represented in the worldwide

cohort of top performers. One out of fourteen children who pass the advanced benchmark in the

TIMSS sample are Indian, a ratio only four other countries can match. For every ten children

in the United States who pass the advanced benchmark—and only 7 percent do—there are four

who pass it in India.

How this situation plays out over the next decade has much to do with how production
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technologies evolve in the labor market. If Indian firms manage to adopt “Ford Model-T” tech-

nologies that require a handful of highly skilled and educated workers to match with a large

number of unskilled workers, India shining can act as a “rising tide that lifts all boats.” But if

Indian firms adopt “McKinsey” technologies that require skilled workers and unskilled workers

to match among themselves (as the IT consulting firms require, but not necessarily call-centers)

it is likely that the country will be characterized by increasing inequalities; an enclave of a few

privileged and self-perpetuating rich surrounded by a majority poor.

There is some hope in the variance decompositions and associations that inequalities in the

educational system can be addressed through government policies. A consistent finding across

OECD countries is the low explanatory power of schools in explaining the variation in test scores

compared to households. This is problematic for policy, since it is easier to change behavior

among teachers and to improve schools, than it is to do the same among parents. That a

large fraction of the variation in achievement arises from differences across schools suggests that

there are school-level variables, manipulable by policy, that could result in positive impacts.

What these might be, and where to go from here, should form the basis of future research and

evaluations.

More generally, the methods proposed in this paper highlight the potential benefits of linking

scores to the worldwide achievement distribution. While such efforts cannot replace the im-

portant work undertaken by TIMSS, they represent a clear improvement over the collection of

ad-hoc exams employed by most researchers, and require little additional work. India is hardly

alone in its absence from the TIMSS rankings, and many countries could benefit from an analysis

similar to ours. Over time, through such efforts, independent researchers may help make tracking

a Millennium Learning Goal a reality.
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A Item Response Theory

A.1 Estimating MLE Scores

Linking our test form to the TIMSS knowledge score distribution requires a underlying model

of the response process. In our case, all 36 items presented can be described by the 3PL model

given (1). Letting xig ∈ {0, 1} denote the response for individual i on item g and X be the full

data matrix, the likelihood of observing X given a vector of associated abilities, θ, is

P (X|θ) =
N∏
i

G∏
g

Pg(xig|θi) (13)

=
N∏
i

G∏
g

Pg(θi)xig [1− Pg(θi)]1−xig , (14)

where the product form arises from assuming independence across items and individuals. Unlike

most IRT models we have suppressed the notation of the item parameters to highlight the fact

that they are fixed. In many cases there may be a mix of fixed anchor items and new uncalibrated

items, but we do not face that situation here.

With fixed parameters it is relatively trivial to maximize the likelihood function associated

with each individual using Newton-Raphson or some other numerical procedure; each first order

condition is independent of the others so we do not face a curse of dimensionality. But some

difficulties remain. In particular, the 3PL model’s guessing parameter makes MLEs undefined

for those scoring below the guessing rate. These flat parts of the likelihood function can make

numerical estimates unstable. Yen et al. (1991) also find that some response vectors can produce

likelihood functions with multiple modes even for tests of a reasonable length (such as 36 items).

These modes can trap derivative based maximization algorithms at local rather than global peaks.

To study these issue, we computed ML estimates using both a Newton-Raphson algorithm and

BILOG-MG. While the estimates agreed perfectly for most individuals, there appeared to be

some instability, particularly near the bottom of the distribution where our test is only weakly

informative and where students often score below the guessing rate. Given these differences we

choose to report only BILOG based ML estimates.
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A.2 Estimating EAP Scores and Plausible Values by Markov Chain Monte

Carlo

Both EAP and plausible values are based on the posterior distribution of individuals’ ability. In

Section 2 we introduced the basics of the Bayesian approach using simplified notation. To be

more precise, we now change the setup slightly and introduce notation for manifest predictors of

the score. Letting Y denote the matrix of predictors such as state, gender, age, wealth, parental

literacy and school type, we follow TIMSS and assume that covariates are linked to ability using

a simple linear model

θ = Y β + ε, (15)

where εi ∼ N(0, σ2). Given this model, we can express the joint posterior distribution for all

parameters as

P (θ, β, σ|X,Y ) ∝ P (X|θ, β, σ, Y )P (θ, β, σ|Y ) (16)

= P (X|θ)P (θ, β, σ|Y ) (17)

= P (X|θ)P (θ|β, σ, Y )P (β, σ|Y ) (18)

= P (X|θ)P (θ|β, σ, Y )P (β)P (σ) (19)

=

∏
i

∏
j

Pj(xij |θi)

P (θi|β, σ, Yi)

P (β)P (σ) (20)

where (16) follows from Bayes Rule, (17) follows from unidimensionality, (18) follows from the

multiplication rule, (19) follows from independence of β, σ2 and Y , and (20) follows from the

independence across individuals and items. Our parameters of interest—the EAP and plausible

value estimates of ability—are the expected value of the posterior θi or simply independent draws

from this distribution. One can therefore think of plausible values as an empirical approximation

of the posterior.

The computational problem becomes how to draw from this posterior distribution. Patz &

Junker (1999a,b) illustrate how Markov Chain Monte Carlo (MCMC) techniques, particularly

so-called Metropolis-Hastings within Gibbs, can be used to draw from the posterior distribution

even in very complicated IRT settings. The basic idea of MCMC is to simulate observations
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from a Markov chain whose stationary distribution is the joint posterior distribution of interest.

There are many strategies for constructing a chain with this property. In the IRT context,

MH-within-Gibbs achieves the objective in a relatively straightforward manner.

The basic motivation behind “Gibbs samplers” is to reduce the simulation problem to lower

dimensional, perhaps univariate, space. In our case, we are interested in the distribution of

N + K + 1 random variables, π = θ1, . . . , θN , β1, . . . , βK , σ|X,Y . Gibbs sampling constructs

a Markov chain Mt = (θ(t)
1 , . . . , θ

(t)
N , β1, . . . , β

(t)
K , σ(t)) by sampling from the full conditionals as

follows:

• θ(t+1)
1 ∼ p(θ1|θ(t)

2 , ..., θ
(t)
N , β1, ..., β

(t)
K , σ(t), X, Y )

• θ(t+1)
2 ∼ p(θ2|θ(t+1)

1 , θ
(t)
3 , ..., θ

(t)
N , β1, ..., β

(t)
K , σ(t), X, Y )

•
...

It can be shown this chain converges to a stationary distribution π (e.g. Casella & George

1992, Tierney 1994). In the IRT context the full conditionals simplify considerably because of

independence between individuals. That is, transition probabilities for each type of N +K + 1

parameters is given by

p(θi|β, σ,Xi, Yi) =

(∏
j P (xij |θi)

)
P (θi|β, σ, Yi)P (β)P (σ)∫ (∏

j Pj(xij |θi)
)
P (θi|β, σ, Yi)P (β)P (σ2)dθi

(21)

p(βk|θ, β−k, σ,Xi, Yi) =

[∏
i

(∏
j P (xij |θi)

)
P (θi|β, σ, Yi)

]
P (β)P (σ)∫ (∏

j Pj(xij |θi)
)
P (θi|β, σ, Yi)P (β)P (σ2)dβk

(22)

p(σ|θ, β,Xi, Yi) =

[∏
i

(∏
j P (xij |θi)

)
P (θi|β, σ, Yi)

]
P (β)P (σ)∫ (∏

j Pj(xij |θi)
)
P (θi|β, σ, Yi)P (β)P (σ)dσ

(23)

If sampling from these full conditional distributions is easy, Gibbs sampling provides a means to

generate a sample from the posterior of each parameter.

In practice, computing the normalizing constant in the denominator of each conditional may

be difficult—e.g. a closed form solution may not exist. The MH-within-Gibbs algorithm avoids

this complication by inserting a Metropolis step when sampling from the full conditionals. Chib &
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Greenberg (1995) provide an excellent pedagogic introduction to Metropolis-Hastings algorithms.

A representative example of the algorithm for parameter θi is:

1. Simulate

θ̃i ∼ θ(t)
i + νi νi ∼ N(0, si) (24)

2. Accept the proposed value as follows:

θ
(t+1)
i =


θ
(t)
i with probability 1− α

θ̃i with probability α
(25)

where

α = min

{
1,

(
p(θ̃i|β(t), σ(t), Xi, Yi)

p(θ(t)
i |β(t), σ(t), Xi, Yi)

)}
(26)

By using a symmetric proposal distribution N(0, si) the normal MH criterion α does not include

the the proposal distribution. Moreover, note that by substituting (21) into (26) we are left

with an algorithm that includes only known functions since the denominator cancels. We can

therefore easily compute α and simulate a Markov chain that converges to the posterior of

interest. The MH steps for the regression parameters βk and σ are completely analogous. For a

more comprehensive description of MCMC methods applied to IRT problems see Patz & Junker

(1999a,b).

To compute the EAP and plausible values estimates we ran a chain of 4,000 observations,

discarding the first 2,000 as a burn-in period. As part of the linear model, we included private

school attendance, age, age-squared, family size, family size squared, gender, father literacy,

mother literacy, wealth category, caste, state, school facilities category, an intercept and a missing

data dummy as explanatory variables. Including these manifest predictors makes our estimates

more precise and is required for subsequent analysis using plausible values to be valid (Mislevy,

Beaton, Kaplan & Sheehan 1992). We assumed flat priors for the β and σ parameters making

the EAP estimates analogous to empirical Bayes, although this assumption has little effect since

the data dominates the prior for these parameters. To ensure convergence, we experimented
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with the proposal distribution variances until the acceptance rates average around 44 percent

with no significant outliers. Visually checking the chain graphs and running multiple chains

and comparing the results confirmed that the chains rapidly converged after several hundred

observations and autocorrelations were modest. Finally, we averaged the last 2,000 observations

to compute the the EAP estimate. Even with this relatively modest chain length, the Monte

Carlo error was tiny compared to the variance associated with each score. We also took five

evenly spaced draws from the posterior as plausible values.
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TABLE 1. ITEM COMPARISON OF 2005 ASSESSMENT OF 9TH GRADE MATHEMATICS IN 

RAJASTHAN & ORISSA WITH TIMSS 1999 ASSESSMENT OF 8TH GRADE MATHEMATICS

Q No. Content Category Performance 
Expectation

Rajasthan

All Students

Orissa

All 
Students

International 
Average

No. 1
Data Representation, 
Analysis and 
Probability

Using Complex 
Procedures 33 32 60

No. 2 Fractions and Number 
Sense Knowing 11 17 46

No. 3 Geometry Using Complex 
Procedures 26 31 59

No. 4 Algebra Knowing 48 47 65

No. 5 Geometry Investigating and 
Solving Problems 39 48 62

No. 6 Algebra Knowing 32 30 50

No. 7 Fractions and Number 
Sense

Investigating and 
Solving Problems 23 32 33

No. 8
Data Representation, 
Analysis and 
Probability

Knowing 43 24 57

No. 9 Measurement Knowing 32 20 49

No. 10 Algebra Investigating and 
Solving Problems 35 36 47

No. 11 Fractions and Number 
Sense Knowing 30 21 50

No. 12
Data Representation, 
Analysis and 
Probability

Using Complex 
Procedures 54 46 64

No. 13 Algebra Knowing 24 40 49

No. 14 Measurement Investigating and 
Solving Problems 29 36 42

No. 15 Geometry Knowing 38 48 54

No. 16 Fractions and Number 
Sense

Using Routine 
Procedures 16 26 39

No. 17 Geometry Using Routine 
Procedures 36 36 58

No. 18 Algebra Using Routine 
Procedures 38 51 65



No. 19 Fractions and Number 
Sense

Using Complex 
Procedures 55 54 75

No. 20
Data Representation, 
Analysis and 
Probability

Using Complex 
Procedures 43 39 58

No. 21 Algebra Communicating 
and Reasoning 28 39 45

No. 22 Algebra Using Routine 
Procedures 32 36 33

No. 23 Geometry Investigating and 
Solving Problems 23 31 40

No. 24 Fractions and Number 
Sense

Using Routine 
Procedures 40 35 52

No. 25 Fractions and Number 
Sense Knowing 47 49 61

No. 26 Measurement Knowing 51 49 60

No. 27 Fractions and Number 
Sense

Investigating and 
Solving Problems 32 37 44

No. 28 Measurement Investigating and 
Solving Problems 19 31 22

No. 29 Algebra Knowing 59 66 71

No. 30 Geometry Using Routine 
Procedures 25 23 37

No. 31 Algebra Knowing 33 43 57

No. 32 Fractions and Number 
Sense

Investigating and 
Solving Problems 34 39 45

No. 33
Data Representation, 
Analysis and 
Probability

Using Complex 
Procedures 31 31 79

No. 34 Algebra Knowing 17 29 37

No. 35 Geometry Using Complex 
Procedures 25 28 46

No. 36 Algebra Knowing 32 40 47

Average 34 37 52

Source: This table from Wu et al ( 2006 ) summarizes the test results from the Rajasthan and Orissa 
Secondary School Survey, 2005 and TIMSS 1999.



FIGURE 1.  THREE-PARAMETER LOGISTIC (3PL) ITEM RESPONSE FUNCTION

Notes: The parameters a, b and c represent the item discrimination, difficulty and pseudo guessing 
parameters, respectively.



FIGURE 2.  RELATIONSHIP BETWEEN PERCENT CORRECT, ABILITY, AND THE TEST 

CHARACTERISTIC CURVE
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Notes:  The top two panels give the item characteristic curves for items 19 and 21.  The bottom panel shows 
the test characteristic curve of an exam which only presents these two items.  One can read the link between 
the percent correct and latent ability using the x- and y-axes (dashed lines).



FIGURE 3. PRECISION OF MLE SCORES
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Notes:  Plot of MLE achievement on MLE achievement (slope=1) with upper and lower 95% confidence 
intervals for individual scores plotted as dotted lines.  The MLE score histogram (an overestimate of the true 
population distribution) is plotted in gray. MLE standard errors are computed from the inverse Fisher 
information matrix and thus graphed as symmetrical +/- 1.96*se.  In reality, the precision is not 
symmetrical; large standard errors arise because it is difficult to discriminate between low and very low 
achievers, and between high and very high achievers.



FIGURE 4.  DISTRIBUTION OF MLE, EAP AND PLAUSIBLE VALUE SCORES
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Notes:  The MLE, EAP, and PV score distributions are represented by a kernel density. As discussed in the 
text, the true population distribution is bounded by the MLE and EAP estimates and given by the PV 
estimates.  The PV kernel density was averaged over five plausible values per student.  For reference, the 
average international score is 487 in 2001 and 467 in 2003.



FIGURE 5. AVERAGE INTERNATIONAL MATHEMATICS ACHIEVEMENT, INCLUDING ORISSA 

AND RAJASTHAN
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Source: TIMSS Mathematics 2001, Grade 8, Exhibit 1.1; TIMSS Mathematics 2003, Grade 8, Exhibit D.1; 
authors’ calculations from Rajasthan and Orissa Secondary School Survey, Grade 9, 2005. Most recent year 
is used when both are available.

Notes: *India is given purely as a best guess and assumes the tested sample within Orissa and Rajasthan 
represents India as a whole.  We only report EAP estimates of the mean since these are most closely 
analogous to the TIMSS methodology.



FIGURE 6. BOTTOM 5TH PERCENTILE OF MATHEMATICS ACHIEVEMENT, INCLUDING 

ORISSA AND RAJASTHAN
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Source: TIMSS Mathematics 2001, Grade 8, Exhibit 1.1; TIMSS Mathematics 2003, Grade 8, Exhibit D.1; 
authors’ calculations from Rajasthan and Orissa Secondary School Survey, Grade 9, 2005. Most recent year 
is used when both are available.

Notes: The Indian percentiles are calculated using the plausible values methodology described in the text.



FIGURE 7. 95TH - 5TH PERCENTILE SPREAD OF MATHEMATICS ACHIEVEMENT, INCLUDING 

ORISSA AND RAJASTHAN
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Notes: The Indian 95%-5% spread is calculated using the plausible values methodology described in the text.



TABLE 2.  TIMSS 2003 INTERNATIONAL BENCHMARKS OF MATHEMATICS ACHIEVEMENT

Advanced International Benchmark – 625
Students can organize information, make generalizations, solve non-routine problems, and draw and 
justify conclusions from data. They can compute percent change and apply their knowledge of numeric 
and algebraic concepts and relationships to solve problems. Students can solve simultaneous linear 
equations and model simple situations algebraically. They can apply their knowledge of measurement 
and geometry in complex problem situations. They can interpret data from a variety of tables and 
graphs, including interpolation and extrapolation.

High International Benchmark – 550
Students can apply their understanding and knowledge in a wide variety of relatively complex 
situations. They can order, relate, and compute with fractions and decimals to solve word problems, 
operate with negative integers, and solve multi-step word problems involving proportions with whole 
numbers. Students can solve simple algebraic problems including evaluating expressions, solving 
simultaneous linear equations, and using a formula to determine the value of a variable. Students can 
find areas and volumes of simple geometric shapes and use knowledge of geometric properties to solve 
problems. They can solve probability problems and interpret data in a variety of graphs and tables.

Intermediate International Benchmark – 475
Students can apply basic mathematical knowledge in straightforward situations. They can add, subtract, 
or multiply to solve one-step word problems involving whole numbers and decimals. They can identify 
representations of common fractions and relative sizes of fractions. They understand simple algebraic 
relationships and solve linear equations with one variable. They demonstrate understanding of 
properties of triangles and basic geometric concepts including symmetry and rotation. They recognize 
basic notions of probability. They can read and interpret graphs, tables, maps, and scales.

Low International Benchmark – 400
Students have some basic mathematical knowledge.

Source: Exhibit 2.1, TIMSS 2003.



TABLE 3.  PERCENT OF ENROLLED CHILDREN PASSING INTERNATIONAL MATHEMATICS 

BENCHMARKS, INCLUDING ORISSA AND RAJASTHAN

Country

Low 
International 
Benchmark 

(>400)

Intermediate 
International 
Benchmark 

(>475)

High 
International 
Benchmark 

(>550)

Advanced 
International 
Benchmark 

(>625)
Singapore 99 93 77 44
Korea, Rep. of 98 90 70 35
Hong Kong, SAR 98 93 73 31
Japan 98 88 62 24
Netherlands 97 80 44 10
Estonia 97 79 39 9
Chinese Taipei 96 85 66 38
Hungary 95 75 41 11
Belgium (Flemish) 95 82 47 9
Malaysia 93 66 30 6
Latvia 93 68 29 5
Russian Federation 92 66 30 6
Sweden 91 64 24 3
Slovak Republic 90 66 31 8
Australia 90 65 29 7
United States 90 64 29 7
Lithuania 90 63 28 5
Scotland 90 63 25 4
Slovenia 90 60 21 3
New Zealand 88 59 24 5
Israel 86 60 27 6
Italy 86 56 19 3
Bulgaria 82 51 19 3
Armenia 82 54 21 2
Norway 81 44 10 0
Serbia 80 52 21 4
Romania 79 52 21 4
Cyprus 77 45 13 1
Moldova, Rep. of 77 45 13 1
Lebanon 68 27 4 0
Macedonia, Rep. Of 66 34 9 1
Jordan 60 30 8 1
Indonesia 55 24 6 1
Iran, Islamic Rep. of 55 20 3 0



Tunisia 55 15 1 0
Egypt 52 24 6 1
Bahrain 51 17 2 0
Orissa 50 27 9 1
Palestinian, Nat'l Auth. 46 19 4 0
Rajasthan 42 17 4 1
Morocco 42 10 1 0
Chile 41 15 3 0
Philippines 39 14 3 0
Botswana 32 7 1 0
Saudi Arabia 19 3 0 0
South Africa 10 6 2 0
Ghana 9 2 0 0

Source: TIMSS Mathematics 2003, Grade 8, Exhibit 2.2 and authors’ calculations from Rajasthan and Orissa 
Secondary School Survey, Grade 9, 2005. 

Notes: Countries ranked by percent passing low benchmark.  Estimates based on plausible values.  All 
percentiles are for enrolled and tested children only.



TABLE 4. ESTIMATED NUMBER OF 14-YEAR OLDS PASSING INTERNATIONAL 

MATHEMATICS BENCHMARKS, IN THOUSANDS

Country

Not Enrolled 
or Below Low 
International 
Benchmark 

(<400)

Low 
International 
Benchmark 

(>400)

Intermediate 
International 
Benchmark 

(>475)

High 
International 
Benchmark 

(>550)

Advanced 
International 
Benchmark 

(>625)

Japan 26 1189 1068 753 291
United States 792 3316 2358 1069 258
Korea, Rep. of 81 633 581 452 226
Chinese Taipei 28 291 257 200 115
India* 17589 4634 2216 705 101
Russian 
Federation 389 1080 775 352 70

Indonesia 3128 1424 622 155 26
Malaysia 155 363 258 117 23
Singapore 0 52 48 40 23
Hong Kong, 
SAR 19 59 56 44 19

Netherlands 27 174 144 79 18
Australia 64 215 155 69 17
Italy 112 436 284 96 15
Egypt 967 675 312 78 13
Hungary 16 100 79 43 12
Belgium 
(Flemish) 10 111 96 55 11

Romania 87 153 101 41 8
Israel 26 83 58 26 6
Serbia 52 82 53 21 4
Slovak Republic 18 50 37 17 4
Sweden 12 104 73 27 3
New Zealand 10 49 33 13 3
Bulgaria 20 52 33 12 2
Lithuania 7 38 26 12 2
Armenia 14 38 25 10 1
Jordan 70 66 33 9 1
Latvia 6 19 14 6 1
Estonia 2 13 10 5 1
Slovenia 3 17 11 4 1
Philippines 1528 478 172 37 0



Iran, Islamic 
Rep. of 787 592 215 32 0

South Africa 900 59 35 12 0
Chile 194 89 33 7 0
Norway 13 49 26 6 0
Moldova, Rep. of 25 38 22 6 0
Morocco 597 103 25 2 0
Lebanon 31 34 13 2 0
Macedonia, Rep. 
Of 14 16 8 2 0

Tunisia 120 70 19 1 0
Cyprus 3 9 5 1 0
Saudi Arabia 535 59 9 0 0
Ghana 521 18 4 0 0
Botswana 36 9 2 0 0
Bahrain 7 6 2 0 0

* We assume that the average passing rates for Rajasthan and Orissa approximates the percentage of 
children passing each benchmark for India as a whole.

Notes:  Cells contain the estimated number of 14-year olds passing each benchmark, in thousands, based 
on Table 6, the net enrollment rate (WDI, 2005), and population data (U.S. Census Bureau, Population 
Division, International Programs Center, 2005).  We assume children who are not enrolled do not pass the 
low-benchmark.  Scotland and the Palestinian National Authority Territories were dropped for lack of 
population data.  Enrollment rate is for the most recent reported years or imputed if only the gross rate is 
available.



FIGURE 8. COLLAPSING THE SCORE DISTRIBUTION
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Notes: Panel 1 shows the distribution of MLE math scores for all children.  We use MLE scores since fixed 
effects were not included in the construction of plausible values (see Mislevy et al, 1992). Panel 2 shows the 
residual distribution controlling for a district fixed effect. Panel 3 shows the residual distribution controlling 
for a district fixed effect and child age, age squared, gender, caste, mother literacy, father literacy, and 
household wealth. Panel 4 shows the residual distribution including an additional school fixed effect.  A 
considerable portion of the distribution is Panel 4 is due to measurement error.



TABLE 5.  VARIANCE DECOMPOSITION: DISTRICTS, HOUSEHOLDS, SCHOOLS, AND 

CHILDREN

Percent of variance explained by: Orissa Rajasthan
Same district 9 4
  And household characteristics 6 4
     And same school 32 41
Remaining (idiosyncratic) 53 52

Notes: Cells contain the percentage of variance (partial R-squared) explained by (a) a district fixed effect; 
(b) a district fixed effect and child age, age-squared, gender, caste, mother literacy, father literacy, and 
household wealth; and (c) a school fixed effect and child age, age squared, gender, caste, mother literacy, 
father literacy, and household wealth.  The idiosyncratic variation includes any remaining variation, a 
substantial portion of which is measurement error.



TABLE A1.  AVERAGE INTERNATIONAL MATHEMATICS ACHIEVEMENT IN 1999 AND 2003, 
INCLUDING ORISSA AND RAJASTHAN

Country Average Score 2003 Average Score 1999
Singapore 605 (3.6) 604 (6.3)
Korea, Rep. of 589 (2.2) 587 (2.0)
Hong Kong, SAR 586 (3.3) 582 (4.3)
Chinese Taipei 585 (4.6) 585 (4.0)
Japan 570 (2.1) 579 (1.7)
Belgium (Flemish) 537 (2.8) 558 (3.3)
Netherlands 536 (3.8) 540 (7.1)
Canada 531 (2.5)
Estonia 531 (3.0)
Hungary 529 (3.2) 532 (3.7)
Finland 520 (2.7)
Czech Republic 520 (4.2)
Malaysia 508 (4.1) 519 (4.4)
Latvia 508 (3.2) 505 (3.4)
Russian Federation 508 (3.7) 526 (5.9)
Slovak Republic 508 (3.3) 534 (4.0)
Australia 505 (4.6) 525 (4.8)
United States 504 (3.3) 502 (4.0)
Lithuania 502 (2.5) 482 (4.3)
Sweden 499 (2.6)
England 496 (4.1)
Scotland 498 (3.7)
Israel 496 (3.4) 466 (3.9)
New Zealand 494 (5.3) 491 (5.2)
Slovenia 493 (2.2) 530 (2.8)
Italy 484 (3.2) 479 (3.8)
Armenia 478 (3.0)
Serbia 477 (2.6)
Bulgaria 476 (4.3) 511 (5.8)
Romania 475 (4.8) 472 (5.8)
Thailand 467 (5.1)
Norway 461 (2.5)
Moldova, Rep. of 460 (4.0) 469 (3.9)
Cyprus 459 (1.7) 476 (1.8)
Macedonia, Rep. Of 435 (3.5) 447 (4.2)
Lebanon 433 (3.1)
Turkey 429 (4.3)
Jordan 424 (4.1) 428 (3.6)



Iran, Islamic Rep. of 411 (2.4) 422 (3.4)
Indonesia 411 (4.8) 403 (4.9)
Tunisia 410 (2.2) 448 (2.4)
Egypt 406 (3.5)
Orissa 404 (1.7)
Bahrain 401 (1.7)
India* (see notes) 392 (1.1)
Palestinian, Nat'l Auth. 390 (3.1)
Chile 387 (3.3) 392 (4.4)
Morocco 387 (2.5) 337 (2.6)
Rajasthan 382 (1.4)
Philippines 378 (5.2) 345 (6.0)
Botswana 366 (2.6)
Saudi Arabia 332 (4.6)
Ghana 276 (4.7)
South Africa 264 (5.5) 275 (6.8)

Source: TIMSS Mathematics 2001, Grade 8, Exhibit 1.1; TIMSS Mathematics 2003, Grade 8, Exhibit D.1; 
authors’ calculations from Rajasthan and Orissa Secondary School Survey, Grade 9, 2005.

Notes: *India is given purely as a best guess and assumes the tested sample within Orissa and Rajasthan 
represents India as a whole.  We only report EAP estimates of the mean since these are most closely 
analogous to the TIMSS methodology.  Parentheses contain standard errors of the mean.



TABLE A2.  DISTRIBUTION OF INTERNATIONAL MATHEMATICS ACHIEVEMENT IN 2003, 
INCLUDING ORISSA AND RAJASTHAN

Country 5th 
percentile

25th 
percentile

50th 
percentile

75th 
percentile

95th 
percentile

Singapore 455(6.6) 556(6.7) 614(4.0) 662(3.5) 723(2.8)
Chinese Taipei 407(6.0) 518(7.0) 596(4.6) 657(5.0) 733(6.0)
Korea, Rep. of 439(3.1) 537(3.2) 596(2.5) 647(2.5) 715(3.0)
Hong Kong, SAR 455(11.9) 546(4.0) 593(3.3) 635(3.0) 691(4.6)
Japan 433(4.4) 519(2.0) 572(2.6) 623(2.2) 697(5.1)
Belgium (Flemish) 398(8.9) 495(3.7) 545(3.1) 588(2.8) 643(3.3)
Netherlands 417(8.4) 488(4.5) 540(5.8) 587(4.8) 644(6.8)
Estonia 416(4.8) 484(3.6) 531(4.0) 577(2.7) 645(4.0)
Hungary 398(8.1) 476(2.9) 531(3.5) 584(4.1) 656(4.2)
Latvia 386(5.2) 458(5.2) 510(2.9) 559(3.5) 625(5.4)
Russian Federation 381(5.5) 456(4.2) 509(4.5) 561(4.0) 632(7.5)
Slovak Republic 371(6.5) 453(4.7) 509(3.9) 564(4.3) 642(4.2)
Malaysia 388(3.7) 455(3.9) 507(5.5) 562(6.1) 630(5.3)
Australia 368(10.4) 450(3.9) 506(3.7) 561(5.8) 634(6.6)
United States 369(4.7) 450(2.9) 505(3.0) 560(3.5) 635(3.8)
Lithuania 370(4.5) 448(2.9) 503(2.4) 557(4.0) 628(2.5)
Scotland 368(8.5) 449(5.0) 501(4.3) 550(3.9) 615(6.0)
Sweden 378(4.0) 452(4.3) 501(2.6) 548(2.9) 614(6.3)
Israel 353(5.9) 438(4.8) 498(5.3) 555(3.5) 630(5.3)
England 373(5.3) 445(5.9) 497(5.9) 552(9.2) 627(5.6)
New Zealand 364(9.9) 441(5.2) 495(5.3) 548(7.1) 623(12.5)
Slovenia 375(9.3) 445(2.4) 492(2.0) 542(1.6) 610(3.7)
Italy 355(6.0) 432(4.0) 486(2.9) 537(3.2) 606(5.0)
Armenia 330(7.5) 423(5.1) 483(3.3) 539(3.2) 605(3.5)
Romania 321(7.8) 413(4.6) 479(4.9) 540(4.9) 619(9.0)
Serbia 326(6.2) 417(4.8) 479(4.0) 540(3.1) 618(4.8)
Bulgaria 333(7.5) 421(5.5) 478(4.6) 535(4.6) 611(6.6)
Norway 340(5.2) 414(2.2) 465(3.3) 511(1.7) 573(2.4)
Moldova, Rep. of 321(5.8) 405(7.3) 464(4.9) 518(4.4) 585(5.1)
Cyprus 321(3.8) 405(3.4) 463(1.8) 518(1.5) 586(1.6)
Macedonia, Rep. of 283(4.8) 376(5.1) 439(2.9) 497(3.4) 574(4.7)
Lebanon 324(3.4) 387(3.9) 432(3.7) 479(4.0) 545(5.8)
Jordan 279(5.3) 362(4.1) 427(4.9) 488(5.0) 567(5.2)
Indonesia 266(11.6) 350(7.9) 411(6.0) 472(4.0) 558(3.6)
Iran, Islamic Rep. of 294(4.8) 360(3.5) 408(3.0) 461(2.4) 537(6.2)
Tunisia 316(2.2) 368(2.4) 407(2.4) 450(2.6) 515(6.2)
Egypt 256(3.0) 341(6.0) 405(4.1) 471(3.7) 560(3.2)
Bahrain 277(3.2) 347(1.5) 402(1.8) 455(2.2) 525(1.4)



Orissa 233 329 401 482 577
Palestinian Nat'l Auth. 241(5.2) 326(3.2) 389(4.1) 455(4.2) 542(5.4)
Morocco 275(4.8) 340(3.0) 387(3.0) 434(3.0) 497(2.8)
Chile 258(4.5) 328(4.8) 382(3.4) 441(4.5) 531(4.9)
Rajasthan 215 312 381 449 544
Philippines 241(3.6) 316(5.6) 373(6.4) 437(6.5) 527(8.0)
Botswana 251(5.1) 316(3.0) 365(2.5) 415(2.7) 487(5.0)
Saudi Arabia 204(10.0) 279(6.6) 331(5.1) 385(4.5) 460(5.4)
Ghana 130(5.8) 213(4.3) 274(5.3) 337(7.3) 430(9.1)
South Africa 117(5.2) 191(3.5) 248(4.0) 316(7.5) 484(20.1)

Source: TIMSS Mathematics 2003, Grade 8, Exhibit D.1 and authors’ calculations from Rajasthan and 
Orissa Secondary School Survey, Grade 9, 2005.  

Notes: Countries ranked by median score.  Estimates of population percentiles computed using plausible 
values.  Parentheses contain standard errors.



FIGURE A1 – TIMSS ITEM RESPONSE FUNCTIONS AND OBSERVED RESPONSES
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Notes: Observed responses (dots) are means of 25 achievement bins.  Expected responses (lines) use fixed 
TIMSS item parameters.
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